NASA TECHNICAL NOTE NASA TN D-7924 .

‘M/L(

E 'LOAM COPY! RETUR E_—%—g
— AFWL TECHNICAL LI=== 3
ﬁ KIRTLAND AFB, N. %%
4,

PROGRAMS FOR COMPUTING

ABSCISSAS AND WEIGHTS FOR

CLASSICAL AND NONCLASSICAL

GAUSSIAN QUADRATURE FORMULAS,

Robert N. Desmarais e

Langley Research Center - TR -
Hampton, Va. 23665 SR

NATIONAL AERONAUTICS AND SPACE ADMIWI‘O‘N- * WASHINGTON, D. C. o)PCT&&ER 1875

5.

TECH LIBRARY KAFB, NM

MR

1. ﬁemn No. | 2, Gc;/er-nment Accession No. 3. Recipient s Latalog No.
NASA TN D-7924

4 Title and Subtitle 5. Report Date
PROGRAMS FOR COMPUTING ABSCISSAS AND WEIGHTS FOR October 1975
CLASSICAL AND NONCLASSICAL GAUSSIAN QUADRATURE '6. Performing Organization Code
FORMULAS

7. Author(s) . 8. Performing Organization Report No.
Robert N, Desmarais B L.-9653

. . . 10. Work Unit No.

9. Performing Organization Name and Address 505-02-21-01

NASA Langley Research Center) 11. Contract or Grant No.

Hampton, Va, 23665

) 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Note

National Aeronautics and Space Administration 1. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

16. Abstract
Computer programs for computing Gaussian quadrature abscissas and weights are
described. For the classical case the programs use Laguerre iteration to compute abscissas
as zeros of orthogonal polynomials., The polynomials are evaluated from known recursion coef-

ficients. The nonclassical case is handled similarly except that the recursion coefficients are
computed by numerical integration, A sample problem, with input and output, is presented to

illustrate the use of the programs. It computes the quadrature abscissas and weights associ-
ated with the weight function (1 - x)1/2 1n (1/x) over the interval (0,1) for quadrature orders
from 16 to 96 in increments of 8.

717. KeyQWords (Suggéted by ;\uthoris)) 18. Distribution Stafemer;t
Gaussian quadrature Unclassified — Unlimited
Orthogonal polynomials
Numerical integration
Subject Category 61
19. Securityr Claussif. {of tt;is--r:po}t) 20. Security Classif. (of this page) 1 21. No. of F;ages 22. Price”
Unclassified Unclassified 73 $4.25

.For sale by the National Technical Information Service, Springfield, Virginia 22161

CONTENTS

Page
SUMMARY . . v s v i ot e e e e e e e e s b e e e e e e e e e e e e e e e e e e e 1
INTRODUCTION v v vt v e e e e v o ot e oo e i e it oo et v e e e 1
SYMBOLS v v v v v e e e e e e ottt et et e e e e e e e e e e e e 2
PROBLEM DESCRIPTION. e e e e e 4
Relation of Orthogonal Polynomials to Gaussian Quadrature 6
Recursion Formulas and Christoffel-Darboux Identity. 7
Numerical Evaluationof hp and hp 0.0 10
Reduction of effect of singularitiesin o(x) 11
Simpler quadratures ¢ o 0t e b e e e e e e e e e e e e e e 15
PROGRAM ORGANIZATION, v v v vt e e v e v o e et e o e e e e e e s 17
A Sample Problem Illustrating How Nonclassical Abscissas and Weights are
Computed i i e s 18
Sample-Problem Program Listing 0000000 25
Sample-Problem Program Input oo v . 37
Sample-Problem Program Output v oo 37
ERROR ANALYSIS, | o o it e e et i e e e e e et e e e e e e e e e 50
APPENDIX A — LAGUERRE ITERATION ¢ . v v v e v v vt o v o 53
Starting Value for Xj. o o 0 o o e e e e e e e e e 53
Deflation. i v v it e 54
Starting Value for Xm 0 v 0 i 0 i e e e e e e e e e e e e e e e e e 54
Iteration Termination« 0 v i v i i e e e e e e e e e e e e e e 54
Other Programing Considerations 54
APPENDIX B — SUBPROGRAM DESCRIPTION+ v v v v v 55
Subroutine CGAUSS |, i i i i e e e e e e e et e e e e e e e e e e e e e 55
Subroutine PNDER i i v v o vt vt s et e e e e e e e e e e e 61
DOUBLE PRECISION Function PNFUN., oo oo 63
Subroutine NGAUSS & . i 4 v i e e v v v e v e e e e e e e e e e e 64
Subroutine JGAUSS i i i e et e e e e e e e e e e e e e e e e e s 66
Subroutine LGAUSS i v i i i it et e e e e e e e e e e e e e 68
DOUBLE PRECISION Function DGAMF | . | 0 i v v vt v v v o o 70
REFERENCES ¢ i i i i i e o e e ot e e o e e e e e s o e o e e e e o e 71
iii

PROGRAMS FOR COMPUTING ABSCISSAS AND WEIGHTS FOR CLASSICAL
AND NONCLASSICAL GAUSSIAN QUADRATURE 'FORMULAS

Robert N. Desmarais
Langley Research Center

SUMMARY

Computer programs for computing Gaussian quadrature abscissas and weights are
described. For the classical case the programs use Laguerre iteration to compute
abscissas as zeros of orthogonal polynomials. The polynomials are evaluated from
known recursion coefficients. The nonclassical case is handled similarly except that the
recursion coefficients are computed by numerical integration. A sample problem, with
input and output, is presented to illustrate the use of the programs. It computes the quad-
rature abscissas and weights associated with the weight function (1 - x)l/2 In (1/x) over
the interval (0,1) for quadrature orders from 16 to 96 in increments of 8.

INTRODUCTION

This paper describes a set of computer programs for computing the abscissas and
weights of Gaussian quadrature formulas. The programs permit the calculation of both
classical and nonclassical abscissas and weights. For the classical case the programs
are complete in the sense that the user need only specify the order, interval, and constants
appearing in the weight function, and the programs will do the rest. For the nonclassical
case, the user has to set up the quadrature scheme to be used for computing the recursion
coefficients of the orthogonal system associated with the Gaussian quadrature formula
desired.

The programs described herein were developed to generate quadrature formulas for
use in computing unsteady aerodynamic forces. For example, the kernel of the integral
equation relating lift to downwash in unsteady subsonic flow can be computed, in part,
using a Laguerre-Gauss quadrature; integrals of the pressure distribution can be com-
puted using Jacobi-Gauss quadrature; and integrals of pressure distributions over a
control-surface hinge can be evaluated using a nonclassical Gaussian quadrature with the
weight function In (1/x).

For all of the quadrature formulas mentioned in the preceding paragraph except the
one with the logarithmic weight the existing published tables of abscissas and weights are

more than adequate. Even if tables are available, however, for classical weight functions
it is more economical to generate the abscissas and weights from a computer program
than it is to keypunch and verify a set of tabulated values. This is not true for nonclassi-
cal weight functions. However, for these weight functions the existing tables are not

adequate.
SYMBOLS
a,b limits of integration
¢n,bn coefficients of recursion formula
Cy correction term for a singularity not appearing in the weight function
f(x) function to be integrated
f1,&®) truncated Taylor's expansion of f(x) about xg
g(x) either pnz(x) or xpnz(x)
hp integral defined by equation (14)
h}, integr.'al defined by equation (15)
I a definite integral to be approximated
k index of summation in a quadrature formula
L degree of truncated Taylor's expansion
L(x) "Lagrange's interpolation function
[an index of summation
0 (x) m(x)

(- Xy (xy)

p(x)

q(x)

r(x)

Xk

Xs

number of terms in quadrature sum used to approximate h, or h}

an index of summation or degree of orthogonal polynomial

order of a Gaussian quadrature formula

order of a Gaussian quadrature formula or degree of orthogonal polynomial

orthogonal polynomials

quotient when f{(x) is divided by w(x)

remainder when f(x)

kth moment

is divided by 7(x)

the ¢th shifted moment of p(x)

=y + Ya + m)

a quadrature weight

variable of integration

a quadrature abscissa

abscissa of a singularity of p(x)

exponents appearing in p(x) or 7(x)

Kronecker delta (0 if

n#+ m;1lif n=m)

Euler's constant, 0.57721 . . .

=(x-x1)(x -%x2) . .
abscissas

. (x - Xp) where xp for k= 1 to n are quadrature

p(x) weight function

o(x) a factor of p(x) that is singular at x = xg
7(%) a classical or almost classical factor of p(x)
Y(Z) digamma function, I''(Z)/T'(Z)

Prime denotes first derivative,
Double prime denotes second derivative.

Superscript within parentheses indicates a specific derivative.
PROBLEM DESCRIPTION

The most efficient way to evaluate integrals with integrable singularities is to use
a Gaussian quadrature formula. In this procedure the singular part of the integrand is
factored out and processed analytically. Also the abscissas at which the remaining fac-
tors of the integrand are to be evaluated are chosen so as to maximize the degree of the
polynomial for which the procedure is exact. That is, a Gaussian quadrature formula is
a numerical integration rule of the form

b n
I= ga p(x) f(x) dx = kZl wic £(x) (1)

where p(x), Xk, and wp are subject to the three following restrictions:
1. The weight function p(x) does not change sign in (a,b).

2. All integrals
b k
Sc= | plo) =¥ dx (2)
a ' .

exist whenever Kk is a positive integer or zero.

3. The quadrature abscissas xi and quadrature weights wp are computed so that
equation (1) is exact whenever f(x) is a polynomial of degree (2n - 1) or less.

Given a weight function p(x) that satisfies conditions 1 and 2 above, the problem is
to find the abscissas and weights that satisfy condition 3. In this paper a numerical pro-

4

cedure for computing these abscissas and weights is described along with a set of com-
puter subprograms written to facilitate implementation of the procedure. The procedure
is based upon several well-known properties of orthogonal polynomials. (See sec-

tions 10.3 and 10.4 of ref. 1, for example.) These properties are:

1. Gaussian quadrature abscissas xi are the zeros of polynomials which are
orthogonal with respect to the weight function p(x).

2. The associated weights wj can be computed from the abscissas and the orthog -
onal polynomials.

3. Consecutive orthogonal polynomials are connected by a three-term recursion
relation,

4. The recursion coefficients needed to evaluate a polynomial of any degree can be
computed from integrals of products of lower degree orthogonal polynomials.

A flow chart of the procedure is presented in figure 1.

[cOMPUTE “SIMPLER"
ABSCISSAS + WEIGHTS
| FROM KNOWN COEFFICIENTS

[sET LEADING RECURSION
COEFFICIENTS TO 1,

EVALUATE INTEGRAND

USING TABULATED RECURSION
COEFFICIENTS AND PERFORM
"SIMPLER" GAUSSIAN QUADRATURES

——

COMPUTE NEW REGCURSION
COEFFICIENTS FROM RATIODS OF
INTEGRALS COMPUTED

ABOVE AND STORE

IN TABLE

ALL DESIRED

COEFFICIENTS

EEN COMPUTED
?

FOR ABSCISSAS AND

SOLVE POLYNOMIAL EQUATION
COMPUTE WEIGHTS THEREFROM

Figure 1.- Flow chart of a method for computing Gaussian
abscissas and weights using numerical integration to
generate recursion coefficients of orthogonal polynomials.

Inspection of the flow chart shows that the recursion coefficients are computed by
numerical integration and then a polynomial root finder is used to compute the abscissas

and weights.

The "simpler’” Gaussian quadrature mentioned in the fourth box of the flow chart
is a closely related quadrature (i.e., its weight function has some of the same singular-
ities) for which the abscissas and weights are already known, Usually it is a classical
Gaussian quadrature. It is used to remove as many as possible of the singularities of the
weight function, and Taylor's theorem is used to reduce the effect of those that remain.
Because all singularities of an arbitrary weight function p(x) are either removed by
incorporation into the "simpler" quadrature, or else have their effect reduced, this pro-
cedure is very accurate. Because Taylor's theorem is used as a method of last resort
to reduce the effect of singularities the procedure will be called the "Taylor's theorem
method" in the rest of this paper. The mathematical details of Taylor's theorem method

t 1

are described in the section entitled ""Numerical Evaluation of h, and hy.

Relation of Orthogonal Polynomials to Gaussian Quadrature

Suppose that in equation (1) we have a set of abscissas xi for k=1,2,.. ., n
chosen arbitrarily, Let

1(x) = (x - xl)(x - xz) ceL(x- Xp) 4)

Then it can be seen that

m(x
Oy (x) = —,—i)——— (5)
T (X)(X - Xk)
is equal to 1if x =x) and is equal to zero if x =x1, X9, . . ., Or X, (excluding xg).

This means that the polynomial

n

L(x) = Z f(xg) 1x(x) (6)
k=1

coincides with f(x) at x =xji. The function L(x) is called the Lagrange interpolation
polynomial. If L{x) is substituted for f(x) in equation (1) an expression for wy is

obtained

_(P m(x)
Wk = S.a o) n'(xk)(x - Xg) dx ()

This expression is valid whether the xi are Gaussian abscissas or are chosen
arbitrarily.

Now suppose that f(x) is a polynomial of degree (2n - 1), If f(x) is divided by
7(x), a quotient q(x) and a remainder r(x) both of degree (n - 1) are obtained. Thus

£(x) = q(x) 7(x) + r(x) (8)
If this is inserted into equation (1) the result is
n
g p(x) q(x) 7(x) dx +S‘ px) r(x) dx = Z wi qXk) 7 (xg) + Z (9)
k=1 k=1 ‘
The first sum above is zero because n(xk) = 0 by equation (4). The approximation is
exact for f(x), an arbitrary polynomial of degree (2n - 1), only if the first integral is also

zero. This will occur if 7(x) is orthogonal to all polynomials q(x) of degree (n - 1) or
less.

The abscissas and weights of a Gaussian quadrature formula can be obtained by
constructing the sequence of polynomials p,(x) such that

b
{50 pp) Py () dx = Spmbn (10)
a

and then computing the zeros xi of p,(x) and computing

b p(x) p,(x)

W=\ ——— - n7’ (11)
£ Ja Ph(xi(x - xx)
Recursion Formulas and Christoffel-Darboux Identity
A set of polynomials p,(x), n=0, 1, 2, 3, . . ., for which equation (10) is true is

called an orthogonal system with respect to the weight function p(x) over the interval
(a,b). Equation (10) itself is not sufficient to define the polynomials p,(x) uniquely. If
hp is not specified p, may have an arbitrary factor and if hp is specified the sign of
pn is ambiguous. By specifying, in addition to equation (10), the coefficient kp of the

highest power term in p,{x), p, can be defined unambiguously. This is called the
standardization of the system of polynomials. Except for the classical polynomials the
standardization adopted herein is kp = 1. For this standardization the three-term
recursion relation for a system of orthogonal polynomials is

pox) =1
p1x) =x -Dby (12)
PpX) = (x - bn) p,_1(x) - cnp,_9&x) (nz1)
where
_bhn1
Pn = h2_1
(13)
- hp_1
hp_2
and where
b
by = | plx) pp20x) ax (14)
a
b
nh = (o) x py2(x) dx (15)
a

The expressions for bp and c¢p are obtained by multiplying equations (12) through by
p(x) p,_1&x) and p(x) p,_a(x), respectively, and integrating from a to b. The same
procedure using p(x) pyy(x), m=0,1,. . ., n - 3, furnishes an inductive proof that the

sequence of polynomials generated by equations (12) is orthogonal.

The integrals hp and hp are computed numerically and used to generate a table
of recursion coefficients bg,ckx. If equations (12) are differentiated, recursion formulas
for p; and pgm) are obtained as follows:

po(x) =0 (16a)

pjx) =1 (16b)

ppX) = (x - bp) pp_1&®) - en pp_o&x) + p,_1(x) (16c)
N

£ P (x) = 0

Lo =0 ;)

(m) (m) (m-1)
Elf pgm)(x) = (X - bp) pn;nl!(x) - en pnr-nz:(x) p(lzﬁl_ 1(;:)

/

The quadrature abscissas x) are obtained by solving the polynomial equation
pn(x) =0 using Laguerre's iteration formula as described in appendix A, Laguerre's
iteration formula requires values of p,(x), pp(x), and py(x) and these are furnished
by equations (12), (16), and (17).

After the abscissas have been computed, the weights are computed from

hp1
Wk = = (18)
Pn(Xk) Ppn_1(Xk)
This is obtained from equation (11) as follows. Let
PnX) Pn_1(y) - Pp_1X) pu(y)
Fplx,y) = -0 -n-1 n-17""n (19)
(x - y)hp_1
If equations (12) are used to eliminate pn(x) and pn(y), one obtains
Fnx,y) = Hl_l Pn-1&) Pp_1(¥) + Fn_1(x,y) (20)
n-
Repeating the process (n - 1) times leads to the sum
n-1
Falx,y) = Z %n—pm(X) Pr(y) (21)
m=0

Equations (19) and (21) are a form of the Christoffel-Darboux identity for orthogonal
polynomials (see eq. 10.3 (10) of ref. 1 for the more usual form). If y is replaced by
Xk, a zero of pp(x), the result is

n-1
Pa®) _ hy 1
X - Xk py_1(Xk) nzo b Pm®) P (k) (22)

Substituting this into equation (11) gives equation (18). Observe that all terms of the sum
exceptthe m =0 term integrate to zero because of the orthogonality of the polynomials

Pm).

Numerical Evaluation of hp and hp

The quantities hp and hy used to compute the recursion coefficients are
obtained by a combination of numerical and closed-form integration. The first step is to
evaluate the first few moments of the weight function analytically. That is,

b
Sg = ga p(x) xt dx (23)

is computed for ¢=0,1,2,. . ., L. The integer L is the order of the singularity
extraction (to be described later) and is usually 2 or 3. Then the first few pairs of
recursion coefficients by and cig are computed from these moments using equa-

tions (13), (14), and (15)

N
hg = Sy hb =51
hb B)
bl =-h—0 h1-82-2b181+b1 SO
24)
h , 9 f (
2:# h1=S3—2b182+b1S1
0
h'
be = 1

10

This furnishes the entries up to k=1L - 1 in a table of recursion coefficients
byg,ck. Each time a pair of integrals hy,hj is computed a new pair of entries
b1 = hi{/hk and Cyp,1 = hk/hk-l is added to this table. As a consequence, each time
an hp or hj integral is to be computed, all the recursion coeificients needed to eval-
uate the integrand are available,

Either hp or hyp is obtained by evaluating the integral

b
I =S‘ p(x) gx) dx . (25)
a

numerically where g(x) = pnz(x) if h, is being evaluated and g(x) =x pnz(x) if hj

is being evaluated. Since the objective of this report is to describe a procedure for com-
puting quadrature abscissas and weights for a weight function p(x) that has a certain set
of singular points, particular attention is paid to these singular points when equation (25)
is integrated. Let p(x) be factored into two functions

p(x) = o(x) 1(x) (26)

where 7 is chosen so that (1) 7(x) contains as many singularities of p(x) as possible,
and (2) T(x) is a weight function over (a,b) whose Gaussian quadrature abscissas and
weights are relatively easy to compute. Occasionally it will be necessary to let 7(x) = 1.

After p(x) has been factored the Gaussian quadrature abscissas xi and weights

wik associated with the numerical integration

b N
1= S‘a 7(x) f(x) dx = kzl wie £(xg) 27

are computed. The quadrature order N is usually taken to be about five times the max-
imum order desired for the weight function p(x).

Reduction of effect of singularities in o(x).- If o(x) has no singularities then hp
and hf are evaluated using equation (27) with f(x) = o(x) g(x). If o(x) has one or
more singularities (the usual case) the strength of these singularities can be reduced by
integrating the leading terms of Taylor's expansion about these singularities in closed
form. Before describing the method in detail an example will be discussed showing the
motivation for the method.

11

Consider the four integrals

1 -
11=§ (1 -x2)"Y2% 4x = 7 = 3.141 592 65
1

1 1/2
12=§ (1-x2" dx =T = 1.570 796 33
-1

~ e

1
Iy =§ (1-x2)3%/? & =%T.= 1.178 097 25
1

and

1 5,/2
14=§1 (1-x2)% ax = 37 = 0.981 747 70

If these integrals are approximated by eight-point Legendre-Gauss quadratures (i.e.,

eq. (1) with n=8 and p(x) = 1) then

G8(11) = 2.936 842 06 for a -6.5-percent error

Gg(Ig) = 1.572 152 22 for a 0.087-percent error

Gg(l3) = 1.178 033 49 for a -0.005-percent error

and

G8(14) = 0.981 755 58 for a 0.0008-percent error

The reason for the difference in accuracy is the order of the singularities at +1.
integrand of Iy is infinite at +1 while I merely has an infinite third derivative. This
is so because for each singularity xg in the integrand of I; the.integrand of I4 has

x - xs)3 as a factor.

Now consider the integral 1 of equation (25). It can be written

b
I= S\ 7(x) o(x) g(x) dx
a

12

It is assumed for now that o(x) has only one singularity at x = xg. The detrimental
effect of this singularity on the numerical quadrature of equation (27) is greatly reduced
if g(x) is replaced by something that has a power of (x - xg) as a factor. By Taylor's
theorem

g(x) = g1,(x) + R (%) (29)
where
L |
gy,) = QZO (x—;i g(V(xs) (30)

is the leading part of the Taylor's expansion of g(x) about xg, the singularity of o(x)
and

RL(x) = gx) - gf,x) (31)

is the remainder. Note that Ry (x) has (X - Xg) L+l 55 a factor. Equation (28) can be
expressed ’

b b
I =§ p(x) gy (x) dx +§ 7(x) o(x) Ry, (x) dx (32)
a a

The first integral can be evaluated analytically
(!Z)
g (x
Iy = S‘ p(x) gy (x) dx = Z g (Xs) Sy (33)

where the shifted moments §£ are obtained from the moments Sy about the origin that
were previously computed (see eq. (23))

¢
Sp=) (-)M(L)S) mxgm (34)
m=0

13

The second integral in equation (32) is evaluated numerically using equation (27)

N
Ip ~ Z Wi 0(xg) [g(xk) - 1) (35)
k=1

Equations (33) and (35) can be combined to give

N L
I= Z Wi 0 Xk Z Qi Cy g(ﬂ) xS) (36)
k=1 =0
where
N
Cyp=9y - z Wi O(Xg) (Xk - xg) ! (37)
k=1 :

is independent of g(x). This is potentially a very accurate way to approximate an inte-
gral, but care has to be exercised in choosing L. If L is larger than the degree of
g(x) the quadrature is exact; that is, there is no truncation error.l In this case it is
merely a scheme for expressing I as a linear combination of the moments and this
method is known to be ill-conditioned (i.e., uncontrolled growth of round-off errorl).
Each correction coefficient Cjy is the difference between the shifted moment

- b
S= [o (x - xg) ax

and a Gaussian approximation to the shifted moment. As either ¢ or N becomes
large, Cy will become very small. Since Cy is the difference of two quantities that
are not approaching zero, eventually for some £, Cy will have no significant figures

at all. Thus, L should be chosen so that this does not happen. When this method is
used, a plot of log |Cy| against ¢ gives points that lie approximately on a straight line
when Cjy has significant figures and lie above the line when Cjy has no significant fig-
ures. Typical values for L are 2 or 3.

ITruncation error is the error resulting from using insufficient terms in a limiting
process, such as a series summation or a quadrature, while round-off error is the error
resulting from performing mathematical operations with finite-length computer words.

14

If pnz(x) and x pn2(x) are substituted for g(x) in equation (36), the following
numerical integration formulas for h, and hp are obtained:

N L
hy = Z wi 0(Xk) pn XKk) + Z g ay(xS
k=1 £=0
) (38)
N L
hh = Z Wk o(xk) Xk pl,1 xk + Xg Z Cy QQ XS Z Co dg- 1(Xs)
where
_1 d Z p (X) p(£-m)(x) 39
q (&) m! (£ -m)! 9

In equations (28) to (35) it was assumed that o(x) had only a single singular point xg.
If o(s) has a second singularity then Rp(x) = g(x) - g1 (x) must be expressed as a
truncated Taylor's series plus remainder expanded about the second singularity.

Simpler quadratures.- An essential step in the evaluation of hp and hp for a
particular weight function p(x) is the computation of the abscissas and weights associ-
ated with a simpler weight function 7(x) where 7(x) is a factor of p(x). This so-
called "simpler quadrature' that is indicated in equation (27) must have abscissas and
weights that are computable without the necessity of evaluating their orthogonal poly-
nomial recursion coefficients by nonexact numerical quadratures. Simpler quadratures
can be classified as either classical or almost classical Gaussian quadratures depending
upon the nature of their associated orthogonal polynomials.

The classical orthogonal polynomials are the sytems of orthogonal polynomials that
can be generated from a generalized Rodrigues' formula

n
Pat) = g5 Lot QP (40)

where K, is a constant and Q(x) is a polynomial in x that is independent of n. It
can be shown (see section 10.7 of ref. 1, for example) that the only zeros of Q(x) are the
limits of integration in equation (1) and hence Q(x) must be of degree 2, 1, or 0. The
associated orthogonal polynomials are, except possibly for a linear change of scale, the
classical Jacobi, generalized Laguerre, and Hermite polynomials, respectively. If equa-

15

tion (40) is substituted for one of the p,(x) factors in equations (14) or (15) the integral
can be evaluated in closed form by integration by parts. This furnishes closed form
expressions for the recursion coefficients (see section 22.7 of ref. 2, for example). The
classical orthogonal polynomials also each satisfy a second-order differential equation
and a first-order differential relation with respect to degree (see sections 22.6 and 22.8
of ref. 2). This makes it possible to compute pp(x) and pp(x) directly from the
recursion formula for pp(x). Separate recursion relations such as equations (16)

and (17) are not needed for classical polynomials. The fact that py and pj are
obtained free for the classical polynomials is the motivation for using Laguerre iteration
for computing quadrature abscissas instead of the QR algorithm as in references 3, 4,
and 5.

The almost classical orthogonal polynomials are those for which equations (14)
and (15) can be evaluated as exact classical Gaussian quadratures. A Gaussian

quadrature

I= § o(x) f(x) dx i wi Xk 41)

is exact (i.e., no truncation error) if f(x) is a polynomial of degree (2n - 1) or less.
Inspection of equations (14) and (15) shows that hp and hj, can be evaluated by exact
quadratures if p(x) can be expressed as a classical weight function times a polynomial
or if (a,b) can be partitioned into a set of abutting intervals such that within each interval
p(x) can be expressed as the product of the classical weight function for that interval
times a polynomial. Sometimes it is possible to replace p(x) Dby its integral definition
and perform a multidimensional exact quadrature, For example, consider the weight
function In(1/x) over interval (0,1). Then

1
hy, = go (1n £)x p,260) ax (42)
In this case p(x) has the integral definition

1.4\ dv (43)

16

S0
1,1 1 v
h'=§ 5 1o 2(x)dvdx=§ y 1y 2(x) dx dv (44)
T ¥R 0¥ "
The substitution x =uv gives
1pn1
hh = S S. uv pnz(uv) du dv (45)
00

This can be evaluated as an exact Gaussian quadrature

n+l n+l
hj = Z Wi Xk Z WmXm pnz(xkxm) (46)
=1 m=1

where Xk,Xm,Wk,Wm are the abscissas and weights associated with the (n + 1) -point
classical Gaussian quadrature with weight function p(x) =1 over (0,1). Several of
these multidimensional exact quadratures are considered in reference 6.

The purpose of the simpler quadrature is to minimize the number of singularities
of p(x) = o(x)7(x) that have to be treated by Taylor's theorem. The simpler quadrature
is the quadrature associated with the factor 7(x) as a weight function and should be
either a classical or almost classical Gaussian quadrature.

PROGRAM ORGANIZATION

The FORTRAN computer program to implement the Taylor's theorem method of
calculating Gaussian quadrature abscissas and weights consists of a user-written calling
program and a furnished subprogram package. The user-written calling program handles
input/output (I/0O) and that portion of the computing task that is peculiar to the weight
function being processed. The subprogram package handles the portion of the program-
ing task that is common to all weight functions. The complexity of the user-written
calling program depends upon the nature of the weight function and the I/O services
desired. For a classical weight function it could be as simple as a call to subroutine
CGAUSS followed by a print statement whereas for a nonclassical weight function with
several singularities in p(x) it could be very complicated.

The subprogram package consists of four subprograms that are called by the user
plus eight other subprograms, The former are:

17

CGAUSS a subroutine to compute classical Gaussian abscissas and weights for an
arbitrary interval and arbitrary weight function exponents

PNDER a subroutine to compute % pl(lm)(x) for m =0,M from the recursion
formulas (12), (16), and (17)

PNFUN a function to compute p,(x). This is an abridged version of PNDER that
executes faster when only p;"/(x) is needed

NGAUSS a subroutine to compute abscissas and weights for a nonclassical Gaussian

quadrature

For computing nonclassical Gaussian quadratures, the user-written calling program
has two tasks to perform. The first and more difficult task is to compute the recursion
coefficients bp and cp required by NGAUSS. Specifically this requires FORTRAN

instructions to:
1. Implement equations (23), (24), and (34).
2. Compute the abscissas and weights required by equation (27) (a call to CGAUSS).

3. Implement equatidn (37). .

4, Compute as many bp,cpn as needed from equations (38), (39), and (13). Note
that PNFUN and PNDER are used when implementing equations (38) and (39).

The second and simpler task, to compute the desired nonclassical Gaussian abscissas
and weights, is accomplished by simply a call to NGAUSS. The user-written calling pro-
gram also manages two labeled COMMON blocks BOFN and COFN that contain the recur-
sion coefficients bp and cn that are given by equations (13). These coefficients are
used by PNDER, PNFUN, and NGAUSS. NGAUSS also requires hgy (see eq. (14)) and
since cj is not used, hgy is passed as the first word of COFN. The easiest way to
describe in detail how a calling program is written is to explain on a step-by-step basis
how the program was written for the sample problem.

A Sample Problem Illustrating How Nonclassical Abscissas
and Weights are Computed

The sample problem is a FORTRAN program, calling CGAUSS, PNFUN, PNDER,
and NGAUSS, to compute nonclassical Gaussian quadrature abscissas and weights to

evaluate

18

1 n
1= 50 (1-0Y21mnlikx) = kZl Wi £(XK) (47)

for values of n from 8 to 96 in increments of 8. The weight function (1 - x)l/2 In (1/x)
occurs when integrating the chordwise pressure distribution over an aircraft control sur-
face in subsonic flow. The coordinates have been rescaled so that x = 0 is the location

of the hinge line and x =1 is the control-surface trailing edge.

One of the purposes of the user-written calling program (henceforth referred to as
program SAMPLE) is to handle input/output. It is possible for SAMPLE to have no input
(i.e., all parameters are built in). However, a program of this sort should be fairly gen-
eral, hence, as many parameters as possible are read in as input.

In the problem statement min(n), max(n), and An were specified as 8, 96, and 8,
respectively, These are read in as N1, N2, and N3. Similarly, the L appearing in
equation (36) is read in as LMAX, the number of correction coefficients Cy computed
and printed, and also as LX, the number of correction terms used in equation (39). The
value of N appearing in equation (27) is read in as NC. The total number of pairs of
recursion coefficients to be computed is read in as NMAX,

Instead of writing the program to process the actual weight function specified in
equation (47), it is written to process the more general function

px) = (1 - x)@-1 ln% (48)

and o is read in using the program variable name ALPHA, A summary of the program
input is as follows:

IFLAG if 0, compute b, and cp;if 1, read by and cp

ALPHA a

UA v + Yla)

LMAX number of correction coefficients computed
LX number of correction coefficients used

NC order of classical Gaussian quadrature

19

NMAX number of bp,cn pairs to be computed or read
N1,N2,N3 delimiters of loop that calls NGAUSS

Before program SAMPLE can be written, expressions for Sy, the moments of p(x),
must be derived and p(x) must be factored into o(x) and 7(x)

1 -
Sg = go (1 -2 1mdxtax (49)

To evaluate this integral, let x =1 - u and note that

1 g“ dv
1 =
"TouT)y Tov (50)
Then
1 -1 [1 ,0-1(; _
S = KL o L (R
0 —1-v
£ 1 a-1+m U(
— m(u = ___ozm 1
-Z(_U <m>50§ S ——dudv z(l S (51)
m=0
where
1, _yo+m
Ule,m) =\ =Y —dv (52)
0 1-v

This can be expressed as a digamma function (see eq. 6.3.22 of ref. 2)
U(e,m) =y + Y(a + 1 + m) (53)

which can be written (eq. 6.3.6 of ref. 2)

m
U(a,m) =y + ¥(a) + z a]-‘}- n (54)

20

Equation (54) suggests that U(a,m) should be computed recursively

U(a,-1) =7 + Y(a)
(55)

= 1
U(a,m) = U(a,m-1) + TR

Instead of having the program compute Y(a), the quantity U(a,-1) =¥ + Y(a) is read
in with the variable name of UA. This is done because the digamma function takes on a
simpler form when its argument is an integer or half integer. Some values of U(a,-1)
are

|
U(1/2,-1) =-21n2=-1.386 294 361 119 890 618 834 464 243
U(1,-1) = 0

U(3/2,—1) =2-21In2=0.613 705 638 880 109 381 165 535 757
? (56)
UE@,-1) = 1

U(5/2,-1) =g -21n2=1,208 372 305 546 776 047 832 202 424

Uu3,-1) =3

J

The weight function p(x) factors into (1 - x)%-1 and In (1 /X). Either could be used
for the simpler quadrature of equation (27) because (1 - x)%-1 is classical and In (1/x)
is almost classical. The choice

o(x) =1n % (57)

T(x) = (1 - x)@-1 (58)

leads to a simpler program.

All the information needed to write the program is now available. Figure 2 is a
flow chart of the program. Figure 3 is an expanded version of the box of the figure 2
flow chart that contains the bp and c¢p calculations for n >3. The program was
written from the flow chart for the CDC 6000 series FORTRAN "RUN" compiler. The
program listing follows along with a listing of subroutine COMPARE that was used for
accuracy estimation when ALPHA = 1. Usage description of the subroutine package is
given in appendix B.

21

22

Read NMAX,
7/ bnaCnaN=1 ,NMAX

Compute U(a,M-1), M=1,LMAX
and store in array S; eqn(55)

overwrite U(a,M-1)
U(GAM—l)/($+M—1);4eqn(51)

Y
compute SL_l,Lzl,LMAX
and store in S: eqgn(51)
\ -
compute ho’bl’CZ’ and b2 I

and store in COFN,BOFN; eqn(24)
¥
/read NC/

call CGAUSS to compute
X(K) ,W(K),K=1,NC
*/
compute CL_l,L:I,LMAX
and store in S; eqn(37)

)
print C ,L=1,LMAX
// L-1 J/

i

/read LX,NMAX /

for N=3,NMAX éaﬁbute] see se
parate flow chart
Cys BN eqn(39),(38),(13)l < for this box

punch ALPHA ,NMAX,NC / N <E:>
B ,C ,N=1,NMAX

Figure 2.- Program flow chart,

/read N1,N2,N3/

4

NN

- Y
call NGAUSS to computﬂ
X(K) ,W(K),K=1,N

N 1
A ¥

fpunch N, X(K) |
W(K) K=1,N

N

’
—N+N3
N2
N
> N2
STOP

Figure 2.- Concluded.

23

24

START

N<—3

A\

Y

call PNDER to compute

PN(L_l)(D)/((L—l)!) for L=1,LX

and store in PD

compute qL_l(D),Lzl,LX

from egn(39) and store
in array @

HS «H
He—chO(U)
HP <0
I
L2
AN
/7
HPé"HP+CL_1QL_2(D)
L—L+1
£ LX > LX R———1
>y
2
ADD WPy~ (X,)
H < H+ADD
HP < HP+ X *ADD
Ké—K+1
> NC .
B(N) «HP/H
C(N) « H/HS
., NeN+1
N\
> NMAX

RETURN
Figure 3.- Recursion-coefficient flow chart,

Sampie -Problem Program Listing

PROGRAM SAMPLE(INPUT=1 yOUTPUT=1 s PUNCH=1
+ »TAPES=INPUT,TAPE6=0CUTPUT ,TAPFT=PUNCH)
CNMMON//X(2000) ,W(2000)

DOUBLE X, W

COMMNN/BOFN/B(100) /CAOFN/C(100)

DOUBLE B,C

DCUBLE S(10),PD{10),PS(L0),Q(10)
NOUBLF® ALPHA,UA,H,HP,HS,ADD, FAC
DOUBLE DLNOG,PNFUN
READ 101y IFLAG
IF(IFLAG.NE.O) GO TN 12
* IF IFLAG.NE.O THE RECURSION COEFFICIENTS ARE RFAD IN.

* PART 1 - RECURSION COSFFICIENT CALCULATION.

RFAD 102, ALPHA,UA
READ 101, LMAX
COMPUTF U(ALPHA,M~-1) AND STORE IN S{M) USING FQN (55}
S{l)=UA+1./ALPHA
ND 1 M=2,LMAX
1 SIM)=S(M-1)+1./(M-1+ALPHA)
DO 2 M=1,LMAX
2 S{M)=S{M)/ (M-1+ALPHA)
SGN=(-1le)**x(LMAX-1)
DO 4 LL=2,LMAX
COMPUTE S(L)} FROM EQN (51},
L=2+LMAX-LL
FAC=la
DO 3 M=2,L
FAC=-FAC*{1le+L-M}/(M-1.)
3 S(LI=S(L)I+FAC*S(1+L-M)
SELYI=SGN%S (L)

4 SGN=-SGN
COMPUTF HO,8l4C2y AND B2 FROM EQN (24). NOTE THAT HO IS STORED IN C{1)
CeiL)=sSt1)

B(L)=S(2)/C(1}

H=S{3}1-B(1)*(2.%S(2)-B{L)*S(1))

C(21=H/7C(1)

B2)=(S{4)-B(LI*(2.*S(3)-B(1)*S(2)))/H
CALL CGAUSS TO SET UP SIMPLER GAUSSIAN QUADRATURE

READ 101, NC

CALL CGAUSSI(NCyXyWy0eDyleD4ALPHA-1.D,0.D)
COMPUTF C(L-1) FROM FQN (37) AND STORE IN S(L).

DO 5 K=1,4NC

ADN=W(K)*DLOG(X (X))

S{1)=S(1)+ADD

N0 5 L=2,LMAX

ADD=A0D*%X{K)

5 S{L)I=S{L)+ADD

PRINT 201,y ALPHA,NC

M=0

PO 6 L=1,LMAX

CLA=ALOGLO(ABS{SNGLLSIL))))

PRINT 202, M,S{L)sM,CLA

6 M=M+]

READ 101, L XyNMAX
COMPUTE RECURSICN COFFFICIENTS. FOR MN=3 THRU NMAX.

DO 10 N=3,NMAX

CALL PNDER(N-1,LXy0.D4PD,PS)

25

26

COMPUTE Q FROM EQN (39).
DO 7 L=1yLX
Q(L)=0.
DO 7 M=1,L
7 QELI=Q(L)+PD (M) *PO(L+L~M)
HS=H
H=S(1)*Q(1)
HP=0, '
COMPUTE TAYLOR'S SERIFS CORRECTION PART OF H,HP INTEGRALS IN FQN (38).
DN 8 L=24LX
H=sH+S (L)*Q(L)
8 HP=HP+S(L)*Q(L-1)
DO 9 K=1,4NC
COMPUTE GAUSSIAN PART OF H,HP INTEGPALS IN £QN (33).
ADD=-DLOG(X{K)) *W{K)XPNFUN(X{K) 4N—1}%%2
H=H+ADD
9 HP=HP+ADD%X(K)
B{N)=HP/H
10 C(M)=H/HS
PUNCH 301, ALPHA,LX NCyNMAX
DO 11 N=1,NMAX
L1 PUNCH 302, NsB(N),CIN)
GO TO 14

* PART 2 - QUADRATURE ABSCISSA AND WFIGHT CALCULATICN.

12 READ 301, ALPHA,LX,NC,NMAX
PO 13 N=1,NMAX
13 READ 302, NyBIN),C(N)
* THIS PART DF THE PRCOGRAM COMPUTFS THE ABSCISSAS AND WEIGHTS.
% [T IS WEIGHT FUNCTION INDEPENDENT.
14 READ 101s N1sN2,N3
IF(N2.LE.D) STOP 2
TF(N3.LF.0) L3=1
PUNCH 303, ALPHA,N1,N2,N3
DC 15 N=N1,N2,N3
PUNCH 304, N
CALL NGAUSS (N, XyW)
D315 M=1,N
15 PUNCH 302, MyX{M),W(M)
IF(ALPHALEQ.l, . AND.NMAX.GE+16) CALL COMPARF
STOP 1

101 FORMAT(314)

102 FORMAT(2040.30)

201 FORMAT{//36H CORRECTINN CPEFFICIENTS FCR ALPHA =,038.28/

+ 9H AND NC =,15//)

202 FORMAT(4H C(,11,43H) =4D38.28,8X12HLOGLO(ABS{C(sI1+5H}}) =,F8.2)

301 FORMAT(//80H RFCURSION COEFFICIFENTS FOR THE WEIGHT FUNCTION LN{l./
+X)R(1.-X)¥x(ALPHA-1.) OVER/22H THE INTERVAL (Oevle)o//oXTHALPHA =,
+N36.28/9X4HLX =, 14/9X4HNC =,15/TX6HLMAX =,14//3X1HN,
+22X4HB{N) y34X4HC(N} /)

302 FORMAT(I4,2D38.28}

303 FORMAT(//82H ABSCISSAS AND WFIGHTS FOR THE WEIGHT FUNCTION LN{l./
+X)x(1e~X) %% ALPHA~1.) OVER/34H THF INTERVAL (J.sl.} FOR ALPHA =,
+D36.28,4H AND/9H FOR N =13,9+ THRU N =13,17H IN INCREMENTS OF,I3)

304 FORMAT(///38X3HN =,13//3X1HM,22X4HX(M),34X4HW({M)/)

END PROGRAM SAMPLE

SUBRIITINFE CGAUSSIN s XsAdsAy By ALPHALB8ETA)
COAMPUTES ARSI TSSAS AND AL [5ATS FNOR CLASSICAL GUASSIAN QUADFATURE
NOJBLE X(L)yW(L)yAy3,4LPHA,RETA
MNIRLE Qe CLyC2,4NSIKT
CASE 1. (JACOST)
1 TF(RETA.L e-1l.) 5D TH) 3
IT{ALPHA.LFa-14) G0 T3 5
TALL JGAUSSIN, X, 4,ALPH4A,3ETA)
CO=.5%{B+A)
Cl=.5%({R=-A}
C2=C1l%x (ALPHA+RETA+1.)
D2 2 I=1t.N
W{l)=C2%w (1)
2 X{IL)=COo+CLxX{T}
RETURN
CASE 2. (LAGJFRRE)
3 IF(ALPHALLE.-1.) GO TJ 5
CALL LGAUSS(NyXeWyALPHA)
Cl=1./3
C2=CL**(ALPHA+1,)*DFX?>(-3%A)
27 4 ‘=l,N
(I)=C2%W(T)
4 X(IV=Aa+C1%X(1)
RETURN
CASE 3. (HERMITE)
5 NU=N/2
NN=NU+NJ
N1=M+)
[F{N.GT.NMN) G T3 8
TALL 1 SAUSS(NUsX gy ~e3D)
N 6 4J=1,NJ
X{NU+MJ)Y=2SRT (X (YUY)
5 A(NU+MUI=.5%4(MU)
0T MU=1,MU
X{MU) ==X (N1-MJ}
7 A{MU) =W (NL-MU)
50 TO 13
8 IF(NU.EQ.O) GO TN 12
CALL LGAUSS(NUXyWyo5D)
NUL=NJ+1
J3C 9 MU=1,N1
X(NUL+MU)=DSNRT(X{4)))
9 wiNUL+MD) =, 5%w (MU) /X{MU)
DO 13 WJ=1.MNU
X{MU) ==X {(N1-MU)
10 W({MUI=W({NL-MU)
X{(NU1)=0.
WINUL)=1,.7724538509055160272981674833)
Cl=2.
T2=3.
DO 11 Mu=1.NU
W{NUL)=W(NUL}®CL1/C2
Cl=Cl+2.
11 C2=C2+2.
GO TO 13
12 X=0.
W=1.7724538509055150272981674833D
13 C1=1./2SART{A)
CO=.,5%B/A
C2=DEXP (A*COX*C0N)
70 14 M=1,N
X{M)I=C1*X(M)-CO
14 W(M)I=C2%wW(M)
RETURN
END SUBROUTINE CGAUSS

27

SUIRJUTINF JGAUSSIN X, Wy ALPHA,BETA)
CIMPUTES JACORI-5AUSS ABSCISSAS + WEIGHTS FJR ALPHA,BETA.GT.-1l.
NIIBLE X(L)yWlL) ALPHA,BETA
DAURBLFE XCpPePY sCONyA»B,CeD9AL,Bl,A2,B2,A82,S5,DSQRT
CALL JATCON(CONGNy ALPAA,3CTA)
1FIN=2)948,1
1 RN=N
AMH =ALPHA-RITA
AB=AL PHA+BFT A
ABN=AR+RN+1,
AM=ALPHA+ON
BN=RETA+RN
C31=L21=AMB
C12=-RN
CIE=C21=RN/(ANERM)
T13=2 JHxANKRI/(AN+SN)
r22=A0B+2.,
C23==RN*ABN
(32=022+2.
C33=022+023
XIz2—lo# 2% [FETA®LL) /{ABN+(RN=-L1.)*SQRT(AN*ABN/(3ETA+2.)))
T2 K=le23
CALL JRECUR(N,ALPHA,,BITALXC,P,P1)
PS=0D
PS1=P1
xS=xr
RX=1e/{le=XS*%XS)
PI=((CLL+CL2%XS)I*PS+C13%PS]1)%=RX
P2I=((C21+C22%XS)*PI+J23%2S)%RX
4=PS/PD-
V=L ,-0%P2Nn/0D
H= =N/ (1e+ SURT({IN=-1a)*(RN%V=-1.)))
XC=¥C+H
[F{KatTo3) G TO 2
TFlH L T 1l.F-24,0R XL QuXS) GO TN 3
CONTINJF
CINTINUFE
CALL JRFCUR(NyALPHA,BETA,XC,P,P1)
X(1)=X"
AL)=C0N%E{1 . =XCXxXC)/PL/PL
AS=3as5=3,
I 7 M=2,N
P3D=((C3L+CI2%XSI4%D 2D+ 33%PN)%RX
J=aHP213/PD
U=3-AS
Va{Qd&)=P3/PND/3.-3S)1/(U*]))
RM=N-M
RI=RM+]1 .
M]=9-1
XCaXC-RL/UW/{1a#SOATARME(L%V-1.))}
77 5 K=1,23
CALL JRECUR(Ny ALPHA,BETAXC4P,PL)
PS=p :
PS1l=pl
XS=Xr
RX=1a/(1le=XS*%XS)
PO={(Z11+C12%XS)¥PS+{13%PS1)%RX
P2D=({C21+C22%XS)%PN+L23%PS) %#RX
AS=RS=D,
20 4 I=1,4M1
DS=1./70XS=-x(1))
AS=AS+DS
4 BS=RS+DS*DS

o N

A=PS/P)

U=1,-AS*Q

V={1.-2%P20/P2-AS*Q*Q)/ (U*U)
==RI%J/U/ (1l +SQRT(RMx(RL1%V-1.)))
XC=XC+H

IF(K.LT.3) GO TN 5

IF(HelT a1.FE-24.NR . XC.EQeXS) GO T2 6

CONTINUF

CONTINJF

CALL JRECUR{N,ALPHABETAsXCyP,P1)
X{M)=xC

A{M)=CON*(1.-XC*XC)/?1/P1
CONTINUF

RETURN

Al=ALPHA+L,

A=Al+l.

81=8£TA+l,

B=831+1l.

C=A+B-1.

S=NDSORT (A%B*C)

D=4 %CIN¥ (A% B+S)
X=2.,%B*B1/(B*C+S)-1.
W=D%B/(B1%(S+B) *%2)
X(2)=1le=2.%A%A1/(AXC+S)
W(2)=DX A/ (AL*{S+A)**%2)

RETURN

IF{N.LT.1}RETURN

Al=ALPHA+] .,

B1=8BFTA+1.

aB82=A1+831

A2=Al+l.

B2=B1+1.

X={BETA-ALPHA)/AB2

W=CON*(1 s—X%X)

WWk24XAB2%x (Lo /Al +L /3L) %%2/ (A2%R2% (1, /A2+1./82)%%2)
RETURN

ENDJ SUBRJOUTINE JGAUSS

29

SU3BROUTINE JRFCUR(N,ALPHA,RETA,X,P,P1)
COMPUTFS NTH AND (N-L1)TH JACDORT POLYNOMIALS
YOJRLE ALPHA,BETA,X,P,PLl,P2+AM;BU,CM,DH,5,C0,C2
AM= AL PHA
IM=RETA
P2=0M=1.
CO=AM+3 M
G=AM=8VY
Cu=C0+1.,
2Z2=0CM+l,
Pl=.5%(G+C2%X)
G=3%00
DO 1 M=2,N
AM=AM+ 1,
BM=RM+] .
NM=DM+1.
Co=C2
C2=C2+2.
CM=CMe],
P=(o5%(C0#1,VE(GHCOIFC2EX) EP1-AMXBMRC2 %P 2) / (DM*CMXCO)
pP2=pP1
1 rl=P
PL=P2
RETURN
FND SUBRDUTINF JRECUR

SURRQOUT TNE JWTCON(C 4Ny A,B)
NOUBLE £ 9yAy84AMAM,ABM, DMy, DGAMF
CIMPJYTES THFE CONSTANT PART JF THF JACOD [-GAUSS QUADRATURE WEIGHT.
AM=A+1.D
BM=8+1.0
ABM=AM$IM-1,
DM=1.
= o 25%7 JDAXABMEDGAMF (AM) *DGAMF (BM)*AM®BM/{DGAMF (ABM) *ABM)
70 1L M=2,N
AM=AM+] .
RM=BM+1,
‘ABM=ABV+1.
DM=NM+1, ’
1 C=C*AM/ OM=BM/ABM
C=0%(1le /AM+ 1. /BM) %2
RETURN
END SUBRNUTINE JWTCON

SJRRIUTINE LGAUSS(N yXsWsALPHA)
COMPUTES LASJFRRF-GAUSS ABSZISSAS + WEIGHTS FOR ALPHA.GT.-l.
D0JBRLE X{1),W(l),ALPHA
IVJBLE XC,4P,PL,CONyAL,AZ, ISQRT
CALL ULATCON(CUNyNy ALPHA)
IF{N=-2)3,3y1
I XC=(1.+ALPHA)/ (1e+(N=-14)}/SORT(2.+ALPHA))
RN=N
AN=ALPHA+RN
N0 2 K=1,23
CALL LRECUR(N,ALPHA,XC,P,P1)
PS=p
PS1=P1
XS=X0
POz (AIN¥PS—AM=PS1) /XS
P23=((XS=1e~Al PHA)*PD=AIN%XP S} /XS
D=PS/PD
V=1l.-NEP2D/PD
H==KN%3/ (1o +SORT ((RN-1 4} &(RN*V=1.)))
XC=XC +H
[F{KLTL3) 50 TN 2)
IF(H.LT e LoE~24.0.XC.ENLXS) GI TH 3
2 CONTINUE
3 CONTINJF
ZALL LRECUR(N,ALPHA,XZ,P,P1)
X(1)=%C
ALL)=CINEXC/PYI/P
A=8=1,
00O 7 M=24N
P3)=((XS=2.~ALPHA)®P2])=(RN-1.}%PO) /XS
0=,.5%P20/PD
U=2-A
Vv={Q*Q-P3N/PD/3.-B) /{J%U)
RM=N-M
RL=RM+1.
M1=M-1
XC=XC-AL/U/(1.+SART(RM={RLEV=1.}))
DN 5 K=1,73
TALL LIECUR(N,ALPHA 4XZ 4P ,4P1)
PS=p
PS1=P1
XS=XC
PN= (RN.PS-AN*®PS11}/XS
P23=({XS=1e-ALPHA}XPD-IN%P S} /XS
A=3=0,
D3 & I=1,M1
D=1, /0XS=X(1)) .
A=A+D
4 R=R+N%*)
G=PS/PD
U=1l.-A%Q
V={1.=-Q%P2D/PD-B%Q&N)/ (U%